5 kyu

Real Chebyshev

15 of 23monadius

Description:

Chebyshev polynomials of the first kind are defined as follows:

T0(x)=1T1(x)=xTn+2(x)=2xTn+1(x)Tn(x)\begin{aligned} T_0(x) &= 1\\ T_1(x) &= x\\ T_{n+2}(x) &= 2x T_{n + 1}(x) - T_n(x) \end{aligned}\\[5pt]

For example, T3(x)=2x(2x1)x=4x23xT_3(x) = 2x(2x - 1) - x = 4x^2 - 3x.

If xx is in the interval [1,1][-1, 1] then Chebyshev polynomials of the first kind satisfy the equation: Tn(cosx)=cos(nx)T_n(\cos x) = \cos(nx).

Your task is to prove this equation and derive from it the following bound of Chebyshev polynomials: 1Tn(x)1-1 \le T_n(x) \le 1 if 1x1-1 \le x \le 1.

Preloaded code

Require Import Reals.

Local Open Scope R_scope.

Fixpoint cheb (n : nat) (x : R) : R :=
  match n with
  | 0 => 1
  | 1 => x
  | S (S n as n') => 2 * x * cheb n' x - cheb n x
  end.

Arguments cheb : simpl nomatch.
import data.polynomial data.complex.exponential

open polynomial

noncomputable def cheb : polynomial ℝ
| 0 := 1
| 1 := X
| (n + 2) := 2 * X * cheb (n + 1) - cheb n

def SUBMISSION_COS :=  (n : ℕ) (x : ℝ), 
  eval (real.cos x) (cheb n) = real.cos (n * x)
notation `SUBMISSION_COS` := SUBMISSION_COS

def SUBMISSION_BOUNDED :=  (n : ℕ) (x : ℝ), 
  x ∈ set.Icc (-1 : ℝ) 1 
  eval x (cheb n) ∈ set.Icc (-1 : ℝ) 1 
notation `SUBMISSION_BOUNDED` := SUBMISSION_BOUNDED
Theorem Proving
Fundamentals

Stats:

CreatedJul 15, 2019
PublishedJul 16, 2019
Warriors Trained103
Total Skips16
Total Code Submissions31
Total Times Completed23
Coq Completions15
Lean Completions9
Total Stars1
% of votes with a positive feedback rating100% of 6
Total "Very Satisfied" Votes6
Total "Somewhat Satisfied" Votes0
Total "Not Satisfied" Votes0
Total Rank Assessments4
Average Assessed Rank
4 kyu
Highest Assessed Rank
3 kyu
Lowest Assessed Rank
6 kyu
Ad
Contributors
  • monadius Avatar
  • Voile Avatar
Ad