Start a new Kumite
AllAgda (Beta)BF (Beta)CCFML (Beta)ClojureCOBOL (Beta)CoffeeScriptCommonLisp (Beta)CoqC++CrystalC#D (Beta)DartElixirElm (Beta)Erlang (Beta)Factor (Beta)Forth (Beta)Fortran (Beta)F#GoGroovyHaskellHaxe (Beta)Idris (Beta)JavaJavaScriptJulia (Beta)Kotlinλ Calculus (Beta)LeanLuaNASMNim (Beta)Objective-C (Beta)OCaml (Beta)Pascal (Beta)Perl (Beta)PHPPowerShell (Beta)Prolog (Beta)PureScript (Beta)PythonR (Beta)RacketRaku (Beta)Reason (Beta)RISC-V (Beta)RubyRustScalaShellSolidity (Beta)SQLSwiftTypeScriptVB (Beta)
Show only mine

Kumite (ko͞omiˌtā) is the practice of taking techniques learned from Kata and applying them through the act of freestyle sparring.

You can create a new kumite by providing some initial code and optionally some test cases. From there other warriors can spar with you, by enhancing, refactoring and translating your code. There is no limit to how many warriors you can spar with.

A great use for kumite is to begin an idea for a kata as one. You can collaborate with other code warriors until you have it right, then you can convert it to a kata.

Ad
Ad
Code
Diff
  • from timeit import timeit
    from math import floor
    
    # 1. Can you implement another optimised function (sum_even_numbers2) using purely native python?
    #    Can you timeit to show it's faster and describe why it is.
    #    Can you also state if there are any pros or cons to how it is implemented?
    
    # 2. Can you implement another optimised function (sum_even_numbers3) using third party packages?
    #    Can you timeit to show it's faster and describe why it is.
    #    Can you also state if there are any pros or cons to how it is implemented?
    
    def sum_even_numbers1(numbers: list[int]) -> int:
        total = 0
        for num in numbers:
            if floor(num/2) == num/2:
                total += num
        return total
    
    # Floating point calculation is not required
    # Only one division required
    # float required 32byte, memory heavy
    def sum_even_numbers2(numbers: list[int]) -> int:
        total = 0
        for num in numbers:
            if num%2 == 0:
                total += num
        return total
    
    # needs to call that function from memory
    def sum_even_numbers3(numbers: list[int]) -> int:
        return sum(filter(lambda x: x > 0 and x%2 == 0, numbers))
    
    # generators are often faster
    def sum_even_numbers4(numbers: list[int]) -> int:
        return sum(num for num in numbers if not num%2)
    
    # generators without if statements are almost always faster
    def sum_even_numbers5(numbers: list[int]) -> int:
        return sum(n * (not n&1) for n in numbers)
    
    • from timeit import timeit
    • from math import floor
    • # 1. Can you implement another optimised function (sum_even_numbers2) using purely native python?
    • # Can you timeit to show it's faster and describe why it is.
    • # Can you also state if there are any pros or cons to how it is implemented?
    • # 2. Can you implement another optimised function (sum_even_numbers3) using third party packages?
    • # Can you timeit to show it's faster and describe why it is.
    • # Can you also state if there are any pros or cons to how it is implemented?
    • def sum_even_numbers1(numbers: list[int]) -> int:
    • total = 0
    • for num in numbers:
    • if floor(num/2) == num/2:
    • total += num
    • return total
    • # Floating point calculation is not required
    • # Only one division required
    • # float required 32byte, memory heavy
    • def sum_even_numbers2(numbers: list[int]) -> int:
    • total = 0
    • for num in numbers:
    • if num%2 == 0:
    • total += num
    • return total
    • # needs to call that function from memory
    • def sum_even_numbers3(numbers: list[int]) -> int:
    • return sum(filter(lambda x: x > 0 and x%2 == 0, numbers))
    • # generators are often faster
    • def sum_even_numbers4(numbers: list[int]) -> int:
    • return sum(num for num in numbers if not num%2)
    • # generators without if statements are almost always faster
    • def sum_even_numbers5(numbers: list[int]) -> int:
    • return sum(n * (not n&1) for n in numbers)
Code
Diff
  • """Test equipment positions."""
    from __future__ import annotations
    from collections import Counter, defaultdict
    import datetime as dt
    import math
    import numpy as np
    import pandas as pd
    from typing import Any
    
    
    def data_dict() -> defaultdict[str, Any]:
        """Return all equipment positions."""
        d = defaultdict(list)
        d["T123"].append({"position": {"x": 42, "y": 24, "z": 0.42}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
        d["T456"].append({"position": {"x": 21.0, "y": 34, "z": 0.289}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
        d["T789"].append({"position": {"x": 17, "y": 39, "z": 0.789}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
        d["T456"].append({"position": {"x": 91.0, "y": 114, "z": 0.489}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
        d["T123"].append({"position": {"x": 43, "y": 25, "z": 0.43}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=1)})
        d["T789"].append({"position": {"x": 19., "y": 79, "z": 0.991}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=6)})
        d["T123"].append({"position": {"x": 46, "y": 29, "z": 0.44}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=2)})
        d["T456"].append({"position": {"x": 24.0, "y": 37, "z": 0.297}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=4)})
        d["T123"].append({"position": {"x": 49.0, "y": 32, "z": 0.451}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
        d["T789"].append({"position": {"x": 23., "y": 81, "z": 1.103}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=7)})
        return d
    
    
    def latest_snapshot() -> dict[str, Any]:
        """Return a snapshot of latest equipment."""
        return {
            "T123": {"position": {"x": 49.0, "y": 32, "z": 0.451}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)},
            "T456": {"position": {"x": 24.0, "y": 37, "z": 0.297}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=4)},
            "T789": {"position": {"x": 23.0, "y": 81, "z": 1.103}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=7)},
        }
    
    
    def counts() -> dict[str, int]:
        """Return counts per equipment."""
        return {
            "T123": 4,
            "T456": 3,
            "T789": 3
        }
    
    
    def speeds() -> defaultdict[str, Any]:
        """Return speeds of equipment."""
        d = defaultdict(list)
        d["T123"].append({"speed": 4.242654947082074, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
        d["T123"].append({"speed": 5.00000999999, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=2)})
        d["T123"].append({"speed": 1.4142489172702237, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=1)})
        d["T123"].append({"speed": None, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
        d["T456"].append({"speed": 102.0687849638664, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=4)})
        d["T456"].append({"speed": 35.43388209045123, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
        d["T456"].append({"speed": None, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
        d["T789"].append({"speed": 4.473538196997986, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=7)})
        d["T789"].append({"speed": 6.6750796998987205, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=6)})
        d["T789"].append({"speed": None, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
        return d
    
      
    def find_furthest_west(d: defaultdict) -> str:
        """
        Find the name of the truck that is furthest west. That is,
        the truck with the smallest easting position component.
        """
        latest = get_latest_snapshot(d)
        truck_furthest_west = ""
        x = latest[list(latest.keys())[0]]['position']['x']
        for item in latest:
            if latest[item]['position']['x'] < x:
                x = latest[item]['position']['x']
                truck_furthest_west = item
        return truck_furthest_west
    
    def get_latest_snapshot(d: defaultdict) -> dict[str, Any]:
        """
        Return a snapshot of the latest positional updates for the
        equipment.
        """
        temp = defaultdict(list)
        
        for item in d:
            df = pd.DataFrame(d[item])
            temp[item] = df.iloc[-1].to_dict()
        return temp
    
    def get_counts(d: defaultdict) -> dict[str, int]:
        """Return a dict of trucks and the times they have provided updates."""
        temp = defaultdict(list)
        for item in d:
            temp[item] = len(d[item])
        return temp
    
    def calculate_speeds(d: defaultdict) -> defaultdict[str, Any]:
        """Return a dict of equipment and the speeds they are travelling at."""
        df = pd.json_normalize(d, sep='_')
        temp = defaultdict(list)
        for item in d:
            df = pd.json_normalize(d[item], sep='_')
            diff = df.diff()
            coords = [c for c in df.columns if not 'timestamp' in c]
            df['speed'] = np.linalg.norm(diff[coords], axis=1)/diff['timestamp'].dt.seconds
            temp[item] = df[['timestamp', 'speed']]
        print(temp)
        pass
    
    
    
    • """Test equipment positions."""
    • from __future__ import annotations
    • from collections import Counter, defaultdict
    • import datetime as dt
    • import math
    • import numpy as np
    • import pandas as pd
    • from typing import Any
    • def data_dict() -> defaultdict[str, Any]:
    • """Return all equipment positions."""
    • d = defaultdict(list)
    • d["T123"].append({"position": {"x": 42, "y": 24, "z": 0.42}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
    • d["T456"].append({"position": {"x": 21.0, "y": 34, "z": 0.289}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
    • d["T789"].append({"position": {"x": 17, "y": 39, "z": 0.789}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
    • d["T456"].append({"position": {"x": 91.0, "y": 114, "z": 0.489}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
    • d["T123"].append({"position": {"x": 43, "y": 25, "z": 0.43}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=1)})
    • d["T789"].append({"position": {"x": 19., "y": 79, "z": 0.991}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=6)})
    • d["T123"].append({"position": {"x": 46, "y": 29, "z": 0.44}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=2)})
    • d["T456"].append({"position": {"x": 24.0, "y": 37, "z": 0.297}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=4)})
    • d["T123"].append({"position": {"x": 49.0, "y": 32, "z": 0.451}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
    • d["T789"].append({"position": {"x": 23., "y": 81, "z": 1.103}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=7)})
    • return d
    • def latest_snapshot() -> dict[str, Any]:
    • """Return a snapshot of latest equipment."""
    • return {
    • "T123": {"position": {"x": 49.0, "y": 32, "z": 0.451}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)},
    • "T456": {"position": {"x": 24.0, "y": 37, "z": 0.297}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=4)},
    • "T789": {"position": {"x": 23.0, "y": 81, "z": 1.103}, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=7)},
    • }
    • def counts() -> dict[str, int]:
    • """Return counts per equipment."""
    • return {
    • "T123": 4,
    • "T456": 3,
    • "T789": 3
    • }
    • def speeds() -> defaultdict[str, Any]:
    • """Return speeds of equipment."""
    • d = defaultdict(list)
    • d["T123"].append({"speed": 4.242654947082074, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
    • d["T123"].append({"speed": 5.00000999999, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=2)})
    • d["T123"].append({"speed": 1.4142489172702237, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=1)})
    • d["T123"].append({"speed": None, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
    • d["T456"].append({"speed": 102.0687849638664, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=4)})
    • d["T456"].append({"speed": 35.43388209045123, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=3)})
    • d["T456"].append({"speed": None, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
    • d["T789"].append({"speed": 4.473538196997986, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=7)})
    • d["T789"].append({"speed": 6.6750796998987205, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=6)})
    • d["T789"].append({"speed": None, "timestamp": dt.datetime(2022, 1, 1, hour=12, minute=0, second=0)})
    • return d
    • def find_furthest_west(d: defaultdict) -> str:
    • """
    • Find the name of the truck that is furthest west. That is,
    • the truck with the smallest easting position component.
    • """
    • pass
    • latest = get_latest_snapshot(d)
    • truck_furthest_west = ""
    • x = latest[list(latest.keys())[0]]['position']['x']
    • for item in latest:
    • if latest[item]['position']['x'] < x:
    • x = latest[item]['position']['x']
    • truck_furthest_west = item
    • return truck_furthest_west
    • def get_latest_snapshot(d: defaultdict) -> dict[str, Any]:
    • """
    • Return a snapshot of the latest positional updates for the
    • equipment.
    • """
    • pass
    • temp = defaultdict(list)
    • for item in d:
    • df = pd.DataFrame(d[item])
    • temp[item] = df.iloc[-1].to_dict()
    • return temp
    • def get_counts(d: defaultdict) -> dict[str, int]:
    • """Return a dict of trucks and the times they have provided updates."""
    • pass
    • temp = defaultdict(list)
    • for item in d:
    • temp[item] = len(d[item])
    • return temp
    • def calculate_speeds(d: defaultdict) -> defaultdict[str, Any]:
    • """Return a dict of equipment and the speeds they are travelling at."""
    • df = pd.json_normalize(d, sep='_')
    • temp = defaultdict(list)
    • for item in d:
    • df = pd.json_normalize(d[item], sep='_')
    • diff = df.diff()
    • coords = [c for c in df.columns if not 'timestamp' in c]
    • df['speed'] = np.linalg.norm(diff[coords], axis=1)/diff['timestamp'].dt.seconds
    • temp[item] = df[['timestamp', 'speed']]
    • print(temp)
    • pass
Puzzles

Non-Regex solution because I have an irrational distaste for Regex.

  • length < 15 check omitted because a correct string already has a minimum length of: 8 (date) + 3 (uppercase) + 3 (month) + 1 (special) + 2 (length) = 17
  • lowercase character check omitted because the month abbreviation already requires it
  • digit character check omitted because the both the date and length already require it
Code
Diff
  • use std::convert::identity;
    use chrono::Local;
    
    const MONTHS: [&str; 12] = ["jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec"];
    
    fn validate_password(password: &str) -> bool {
        let len = password.len();
        let conditions = [
            len <= 40,
            !(2..=len/2).any(|i| len % i == 0),
            password.chars().filter(char::is_ascii_uppercase).count() >= 3,
            !password.chars().all(char::is_alphanumeric),
            password.chars().flat_map(|c| c.to_digit(10)).sum::<u32>() >= 25,
            MONTHS.iter().any(|month| password.contains(month)),
            password.contains(&Local::now().format("%Y%m%d").to_string()),
            password.split(char::is_alphanumeric).map(str::len).max().unwrap_or(0) <= 1,
            password.contains(&len.to_string())
        ];
        conditions.into_iter().all(identity)
    }
    • use regex::Regex;
    • use chrono::prelude::*;
    • use std::convert::identity;
    • use chrono::Local;
    • const MONTHS: [&str; 12] = ["jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec"];
    • fn validate_password(password: &str) -> bool {
    • let mut regexps = vec![
    • r"^.{17}|.{19}|.{23}|.{29}|.{31}|.{37}$", // The maximum length of the password is 40 characters,
    • // The minimum length of the password is 15 characters
    • // The length of the password must be a prime number
    • r"[a-z]", // Must at least 1 lower case
    • r"[A-Z].*[A-Z].*[A-Z]", // and 3 upper case letter,
    • r"[\d]", // 1 number,
    • r"[^\w^\s]", // 1 special character
    • r"jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec", //Must have the diminituve of a month
    • let len = password.len();
    • let conditions = [
    • len <= 40,
    • !(2..=len/2).any(|i| len % i == 0),
    • password.chars().filter(char::is_ascii_uppercase).count() >= 3,
    • !password.chars().all(char::is_alphanumeric),
    • password.chars().flat_map(|c| c.to_digit(10)).sum::<u32>() >= 25,
    • MONTHS.iter().any(|month| password.contains(month)),
    • password.contains(&Local::now().format("%Y%m%d").to_string()),
    • password.split(char::is_alphanumeric).map(str::len).max().unwrap_or(0) <= 1,
    • password.contains(&len.to_string())
    • ];
    • let date = Local::now().format("%Y%m%d").to_string(); //Must have today's date
    • regexps.push(&date);
    • let len = password.len().to_string(); //The length of the password must be inside the password
    • regexps.push(&len);
    • let not_match = Regex::new(r"[^\w^\s]{2}").unwrap(); //2 special characters can't be together
    • !not_match.is_match(password) && regexps.iter().all(|r|Regex::new(r).unwrap().is_match(password))
    • conditions.into_iter().all(identity)
    • }
Fundamentals
Strings

-2 chars

Code
Diff
  • reverseStr=s=>[...s].reverse().join``
    • reverseStr=s=>[...s].reverse().join('')
    • reverseStr=s=>[...s].reverse().join``
Code
Diff
  • //who needs dyn for that?
    enum Animal {
        Dog,
        Cat,
        Rat,
    }
    
    impl Animal {
        //moved from create_animal
        fn new(animal_type: &str) -> Animal {
            match animal_type {
                "dog" => Animal::Dog,
                "cat" => Animal::Cat,
                "rat" => Animal::Rat,
                _ => panic!("Unknown animal {animal_type}"),
            }
        }
        
        fn speak(&self) -> &'static str {
            match self {
                Animal::Dog => "Woof!",
                Animal::Cat => "Meow!",
                _ => unimplemented!(),
            }
        }
    }
    
    //next: implement Result to avoid panicing
    • trait Animal {
    • fn speak(&self) -> &'static str {
    • unimplemented!();
    • }
    • //who needs dyn for that?
    • enum Animal {
    • Dog,
    • Cat,
    • Rat,
    • }
    • struct Dog;
    • impl Animal for Dog {
    • fn speak(&self) -> &'static str {
    • "Woof!"
    • impl Animal {
    • //moved from create_animal
    • fn new(animal_type: &str) -> Animal {
    • match animal_type {
    • "dog" => Animal::Dog,
    • "cat" => Animal::Cat,
    • "rat" => Animal::Rat,
    • _ => panic!("Unknown animal {animal_type}"),
    • }
    • }
    • }
    • struct Cat;
    • impl Animal for Cat {
    • fn speak(&self) -> &'static str {
    • "Meow!"
    • match self {
    • Animal::Dog => "Woof!",
    • Animal::Cat => "Meow!",
    • _ => unimplemented!(),
    • }
    • }
    • }
    • struct Rat;
    • impl Animal for Rat {}
    • fn create_animal(animal_type: &str) -> Box<dyn Animal> {
    • match animal_type {
    • "dog" => Box::new(Dog),
    • "cat" => Box::new(Cat),
    • "rat" => Box::new(Rat),
    • _ => panic!()
    • }
    • }
    • //next: implement Result to avoid panicing