Kumite (ko͞omiˌtā) is the practice of taking techniques learned from Kata and applying them through the act of freestyle sparring.
You can create a new kumite by providing some initial code and optionally some test cases. From there other warriors can spar with you, by enhancing, refactoring and translating your code. There is no limit to how many warriors you can spar with.
A great use for kumite is to begin an idea for a kata as one. You can collaborate with other code warriors until you have it right, then you can convert it to a kata.
Return None
if the given input array is not missing a natural sequence.
class MissingInteger: def __init__(self, arr): self.arr = arr self.temp = [i for i in range(min(self.arr), max(self.arr) + 1)] def solution(self): for x, y in zip(self.arr, self.temp): if x != y: return y return None
- class MissingInteger:
- def __init__(self, arr):
- self.arr = arr
- self.temp = [i for i in range(min(self.arr), max(self.arr) + 1)]
- def solution(self):
xor = 1for i, el in enumerate(self.arr):if self.arr[i] != 0:xor ^= self.arr[i]xor ^= len(self.arr) + 1return xor- for x, y in zip(self.arr, self.temp):
- if x != y:
- return y
- return None
import codewars_test as test from solution import MissingInteger @test.describe("Example") def test_group(): @test.it("test case") def test_case(): test.assert_equals(MissingInteger([1, 2, 3, 4, 5, 7, 8, 9]).solution(), 6) test.assert_equals(MissingInteger([1, 2, 4, 5, 6, 7, 8, 9]).solution(), 3) test.assert_equals(MissingInteger([-2, 0, 1, 2, 3, 4, 5, 6]).solution(), -1) test.assert_equals(MissingInteger([1, 2, 3, 4, 5, 6, 7, 8, 9]).solution(), None)
- import codewars_test as test
- from solution import MissingInteger
- @test.describe("Example")
- def test_group():
- @test.it("test case")
- def test_case():
- test.assert_equals(MissingInteger([1, 2, 3, 4, 5, 7, 8, 9]).solution(), 6)
- test.assert_equals(MissingInteger([1, 2, 4, 5, 6, 7, 8, 9]).solution(), 3)
test.assert_equals(MissingInteger([1, 2, 3, 4, 5, 6, 7, 8, 9]).solution(), 10)- test.assert_equals(MissingInteger([-2, 0, 1, 2, 3, 4, 5, 6]).solution(), -1)
- test.assert_equals(MissingInteger([1, 2, 3, 4, 5, 6, 7, 8, 9]).solution(), None)
Represents an ordinal numeral (i.e. 1st, 24th, etc.)
from __future__ import annotations class OrdinalNumeral: def __init__(self, n: int): """Represents an ordinal numeral (i.e. 1st, 24th, etc.) :param int n: The integer to represent :raises ValueError: Raised if n is below 0 :raises TypeError: Raised if a non-integer/OrdinalNumber value is added to the number """ if n < 0: raise ValueError("n must be positive or 0") self._n = n @property def n(self): return self._n @n.setter def n(self, n: int): if n < 0: raise ValueError("n must be positive or 0") self._n = n @property def numeral(self): if 11 <= (self.n % 100) <= 13: return str(self.n) + "th" return str(self.n) + ("th", "st", "nd", "rd", "th")[min(4, self.n % 10)] def __repr__(self): """Representation that can be used to recreate the object""" return f"OrdinalNumeral(n={self.n})" def __str__(self): """The 'nice' string version of the class""" return self.numeral def __int__(self): return self.n def __add__(self, other: int | OrdinalNumeral): """Can implement arithmetic operations if desired""" if isinstance(other, OrdinalNumeral): return OrdinalNumeral(self.n + other.n) elif isinstance(other, int): return OrdinalNumeral(self.n + other) else: raise TypeError(f"Unable to add {type(other)} with OrdinalNumeral")
- from __future__ import annotations
- class OrdinalNumeral:
- def __init__(self, n: int):
if n < 0: raise ValueError("n must be positive or 0")self.n = nself.numeral = self._numeral()- """Represents an ordinal numeral (i.e. 1st, 24th, etc.)
- :param int n: The integer to represent
- :raises ValueError: Raised if n is below 0
- :raises TypeError: Raised if a non-integer/OrdinalNumber value is added to the number
- """
- if n < 0:
- raise ValueError("n must be positive or 0")
- self._n = n
- @property
- def n(self):
- return self._n
- @n.setter
- def n(self, n: int):
- if n < 0:
- raise ValueError("n must be positive or 0")
- self._n = n
- @property
- def numeral(self):
- if 11 <= (self.n % 100) <= 13:
- return str(self.n) + "th"
- return str(self.n) + ("th", "st", "nd", "rd", "th")[min(4, self.n % 10)]
- def __repr__(self):
"""representation that can be used to recreate the object"""return f"OrdinalNumeral(self.n)"- """Representation that can be used to recreate the object"""
- return f"OrdinalNumeral(n={self.n})"
- def __str__(self):
"""the 'nice' string version of the class"""- """The 'nice' string version of the class"""
- return self.numeral
- def __int__(self):
- return self.n
def __add__(self, other):"""can implement arithmetic operations if desired"""if (isinstance(other, OrdinalNumeral)): return OrdinalNumeral(self.n + other.n)elif (isinstance(other, int)): return OrdinalNumeral(self.n + other)else: raise TypeError(f"Unable to add {type(other)} with OrdinalNumeral")def _numeral(self):"""define the ordinal numeral string"""if 11 <= (self.n % 100) <= 13: return str(self.n)+"th"return str(self.n)+("th", "st", "nd", "rd", "th")[min(4, self.n % 10)]- def __add__(self, other: int | OrdinalNumeral):
- """Can implement arithmetic operations if desired"""
- if isinstance(other, OrdinalNumeral):
- return OrdinalNumeral(self.n + other.n)
- elif isinstance(other, int):
- return OrdinalNumeral(self.n + other)
- else:
- raise TypeError(f"Unable to add {type(other)} with OrdinalNumeral")
module Solution (fizzbuzz) where make_mod_repr d repr n | n `mod` d == 0 = Just repr | otherwise = Nothing mod_3_repr = make_mod_repr 3 "fizz" mod_5_repr = make_mod_repr 5 "buzz" fizzbuzz :: [String] -> Int -> Int -> [String] fizzbuzz _ i n = map fizzbuzz' [i .. n] where fizzbuzz' x | repr == Nothing = show x | otherwise = (\(Just x) -> x) repr where repr = foldl (\acc f -> acc <> f x) Nothing [mod_3_repr, mod_5_repr] -- we don't need the empty accumulator -- could be fizzbuzz :: Int -> Int -> [String]
module Solution where- module Solution (fizzbuzz) where
- make_mod_repr d repr n | n `mod` d == 0 = Just repr
- | otherwise = Nothing
- mod_3_repr = make_mod_repr 3 "fizz"
- mod_5_repr = make_mod_repr 5 "buzz"
- fizzbuzz :: [String] -> Int -> Int -> [String]
- fizzbuzz _ i n = map fizzbuzz' [i .. n]
- where
- fizzbuzz' x | repr == Nothing = show x
- | otherwise = (\(Just x) -> x) repr
- where
- repr = foldl (\acc f -> acc <> f x) Nothing [mod_3_repr, mod_5_repr]
- -- we don't need the empty accumulator
- -- could be fizzbuzz :: Int -> Int -> [String]
SELECT * FROM employees emp WHERE emp.salary>5000000 AND emp.months>=12 ORDER BY emp.salary DESC
select * from employees where employees.salary>5000000 and employees.months>=12order by employees.salary desc- SELECT *
- FROM employees emp
- WHERE emp.salary>5000000 AND emp.months>=12
- ORDER BY emp.salary DESC
function* blaze_it() { yield 69; yield 420; yield 1337; } const dark_tech = blaze_it(); let a = 10; a = dark_tech.next().value; // a = 69 a = dark_tech.next().value; // a = 420 a = dark_tech.next().value; // a = 1337 const b = 42; a = 10 * b; // a = 420 a = 17; // a = 17 a -= Math.sin(Math.PI / 2); // a = 16 a = a ^ 69; // a = 85 a = 420; // a = 420 console.log(a); // Output: 420
- function* blaze_it() {
- yield 69;
- yield 420;
- yield 1337;
};- }
const dark_tech = blaze_it()- const dark_tech = blaze_it();
let a=10;a = dark_tech.next().value;a = dark_tech.next().value;a = dark_tech.next().value;- let a = 10;
- a = dark_tech.next().value; // a = 69
- a = dark_tech.next().value; // a = 420
- a = dark_tech.next().value; // a = 1337
- const b = 42;
a = 10*b;a= 17;a - Math.sin(Math.PI / 2);a = a^69;a=420;- a = 10 * b; // a = 420
- a = 17; // a = 17
- a -= Math.sin(Math.PI / 2); // a = 16
- a = a ^ 69; // a = 85
- a = 420; // a = 420
- console.log(a); // Output: 420