Given a positive number n > 1 find the prime factor decomposition of n. The result will be a string with the following form :
"(p1n1)(p2n2)...(pk**nk)"
where a ** b means a to the power of b
with the p(i) in increasing order and n(i) empty if n(i) is 1.
Example: n = 86240 should return "(25)(5)(72)(11)"
require 'prime'
def primeFactors(n)
result = ''
Prime.prime_division(n).each do |n|
result += '(' + n[0].to_s
n[1] < 2 ? result += ')' : result += '**' + n[1].to_s + ')'
end
result
end
Test.assert_equals(primeFactors(7775460), "(2**2)(3**3)(5)(7)(11**2)(17)")