Just converting the int into string, reversing it by ( [::-1] ) and finaly converting again to an int.
def reverse_int(num): return int(str(num)[::-1])
def reverse_int(int_reverse: int) -> int:div_mod: (int, int) = divmod(int_reverse, 10)reverse_int: int = div_mod[1]while div_mod[0]:div_mod = divmod(div_mod[0], 10)reverse_int *= 10reverse_int += div_mod[1]return reverse_int- def reverse_int(num):
- return int(str(num)[::-1])
First checking for exceptions such as len() == 0 and len() == 1.
Then saving in sol wether is a palindromic by checking all posibilities in it.
Later checking for exceptions such as len() == 0.
Finally showing the lenth of the largest solution.
def length_longest_palindrome(string): n = len(string) if n in [0,1]: return n s = range(n) sol = [string[i:j+1] for i in s[:-1] for j in s[1:] if string[i:j+1] == string[i:j+1][::-1]] if len(sol) == 0: return 0 return max([len(i) for i in sol])
- def length_longest_palindrome(string):
n = len(string)if n == 0:return 0maxlen = 1table = [[False for i in range(n)]for j in range(n)]for i in range(n):table[i][i] = Truestart = 0for i in range(n-1):if string[i] == string[i+1]:table[i][i+1] = Truestart = imaxlen = 2for k in range(3,n+1):for i in range(n-k+1):j = i + k - 1if table[i+1][j-1] and string[i] == string[j]:table[i][j] = Trueif k > maxlen:start = imaxlen = kreturn maxlen- n = len(string)
- if n in [0,1]: return n
- s = range(n)
- sol = [string[i:j+1] for i in s[:-1] for j in s[1:] if string[i:j+1] == string[i:j+1][::-1]]
- if len(sol) == 0: return 0
- return max([len(i) for i in sol])