# We can use Sieve of Eratosthenes for fast search of prime numbers # https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes def primemaker(x): # Edge cases if x < 2: return [] # Create array n = x + 1 a = [True] * n # Sieve population for i in range(2, int(n ** 0.5) + 1): # It's enough to look at the candidates if a[i]: # up to the square root of the last number. for k in range(i * i, x + 1, i): a[k] = False return [p for p in range(2, n) if a[p]]
- # We can use Sieve of Eratosthenes for fast search of prime numbers
- # https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
- def primemaker(x):
- # Edge cases
- if x < 2:
- return []
# Sieve initialsa = [True] * (x + 1)a[0] = a[1] = Falseprimes = []- # Create array
- n = x + 1
- a = [True] * n
- # Sieve population
for (i, isprime) in enumerate(a):if isprime:primes.append(i)for n in range(i * i, x + 1, i):a[n] = Falsereturn primes- for i in range(2, int(n ** 0.5) + 1): # It's enough to look at the candidates
- if a[i]: # up to the square root of the last number.
- for k in range(i * i, x + 1, i):
- a[k] = False
- return [p for p in range(2, n) if a[p]]